Time: 3 hrs.

Fifth Semester B.E. Degree Examination, June/July 2013

Formal Languages and Automata Theory

Max. Marks: 100 Note: Answer FIVE full questions, selecting

at least TWO questions from each part.

PART - A

- Define D.F.A. What are the difference between D.F.A and N.F.A? (06 Marks)
 - Construct a D.F.A. to accept strings over {a, b} such that every block of length five contains atleast two a's. (08 Marks)
 - Define N.F.A. and construct an N.F.A. that accepts the language 'aa*(a + b).' c. (06 Marks)
- 2 Define ε -NFA. Construct the ε -NFA that accepts 01(0+1)*. a. (06 Marks)
 - Let R be a regular expression. Then there exists a finite automaton $A = (Q, \Sigma, \delta, q_0, F)$. Prove the above theorem. (06 Marks)
 - Convert the following ε -NFA to DFA.

(08 Marks)

- Fig.Q2(c)
- 3 State and prove pumping lemma for the regular language. (07 Marks)
 - Obtain the R.E. from the following FA using state elimination method.

Fig.Q3(b)

Minimize the following DFA using table filling algorithm.

	256		8 8						
,di	State	$\rightarrow A$	В	*(C)	D	Е	F	G	Н
100	< 0	В	G	Α	C	Н	С	G	G
gri ³⁸	1	F	С	C	G	F	G	Е	С

Consider the following grammar:

$$E \rightarrow E + E/E - E$$

$$E \rightarrow E * E/E/E$$

 $E \rightarrow (E)$

 $E \rightarrow a/b/c$

- i) Obtain the left most derivation for the string (a + b * c)
- ii) Obtain the right most derivation for the string (a + b) * c.

(08 Marks)

b. Prove that the following grammar is ambiguous, using the string "ibtibtaea."

$$S \rightarrow iC_tS/iC_tSeS/a$$

 $C \rightarrow b$ (08 Marks)

Discuss the various applications of context free grammar.

(04 Marks)

PART - B

5 a. Define PDA. Obtain a PDA to accept the following language:

 $L = \{n_a(w) = n_b(w) \text{ where } n \ge 1\}$

Draw the transition diagram for PDA. Also, show the moves made by PDA for the string aabbab.

(12 Marks)

b. Obtain the PDA for the following grammar:

 $S \rightarrow aSa/aa$

 $S \rightarrow bSb/bb$

(08 Marks)

6 a. What is an unit production? Begin with the grammer:

 $S \rightarrow ABC/BaB$

A → aA/BaC/aaa

 $B \rightarrow bBb/a/D$

 $C \rightarrow CA/AC$

 $D \rightarrow \epsilon$

i) Eliminate ε - productions.

ii) Eliminate unit productions in the resulting grammar.

iii) Eliminate any useless symbols in the resulting grammar.

(10 Marks)

b. Obtain the following grammar in CNF:

 $S \rightarrow OA/1B$

 $A \rightarrow OAA/1S/1$

 $B \rightarrow 1BB/OS/O$

(10 Marks)

7 a. Design a turing machine to accept the following language:

$$L = \{0^n 1^n / n \ge 1\}$$

Also show the sequence of moves mde by the TM for the string "00001111".

(14 Marks)

b. Write a note on multitape turing machine and non-deterministic turing machine. (06 Marks)

8 Write short notes on:

- a. Post correspondence problem
- b. Halting problem in TM
- c. Universal turing machine

d. Applications of R.E.

(20 Marks)